Microalgae Commodities from Coal Plant Flue Gas CO2 DE-FE0026490, 10/01/15–09/30/17, Andy Aurelio, Program Manager

Funding: DOE NETL: \$863,327Orlando Utilities Commission (OUC) Cost Share: \$282,640

John Benemann, P.I., Tryg Lundquist, Co-P.I., Kyle Poole, Project Engineer *MicroBio Engineering Inc.*

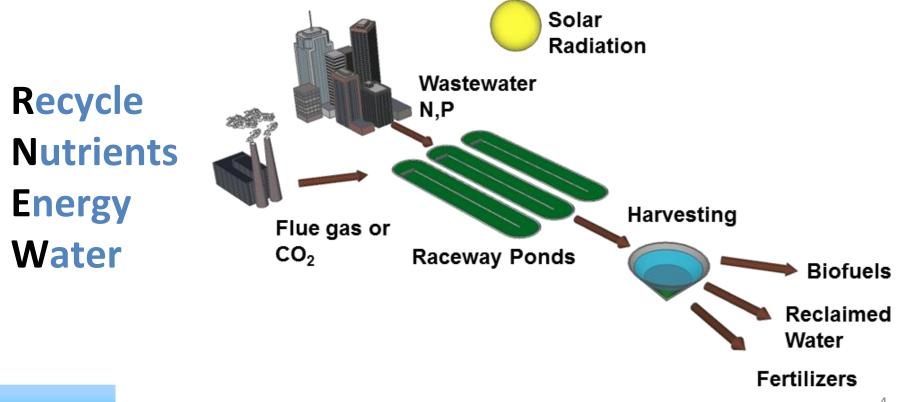
PROJECT PARTICIPANTS

- MicroBio Engineering Inc. (MBE), Prime, P.I.: John Benemann, CEO TEAs, LCAs, gap analyses, ponds for OUC & UF, Project management
- Subrecipients:
- Orlando Utilities Commission (OUC): Stanton Energy Center (SEC) power plant /site data; Operate algae ponds at SEC with flue gas CO₂
- Univ. of Florida (UF): operate test ponds, algae anaerobic digestion
- Arizona State Univ.: Train OUC and UF staff in algae cultivation
- Scripps Institution of Oceanography (SIO), Lifecycle Associates (LCA), SFA Pacific Inc.: LCA, TEA and engineering assistance to MBE

UF LCA SFA ASU SIO MBE **MBE** OUC Dominick Stefan Dale Rob Ann Tom John Tryg **Dempster Mendola Unnasch Simbeck** Benemann Lundquist Teegarden Wilkie

- **Facilities Designs**
- **Algae Equipment** \bullet
- R&D, Enginnering Consulting ullet
- Techno-Economic Analyses
- Life Cycle Assessments

- Wastewater Reclamation
- **Biofuels, Biofertilizers**
- **AquaFeeds**, Nutritionals

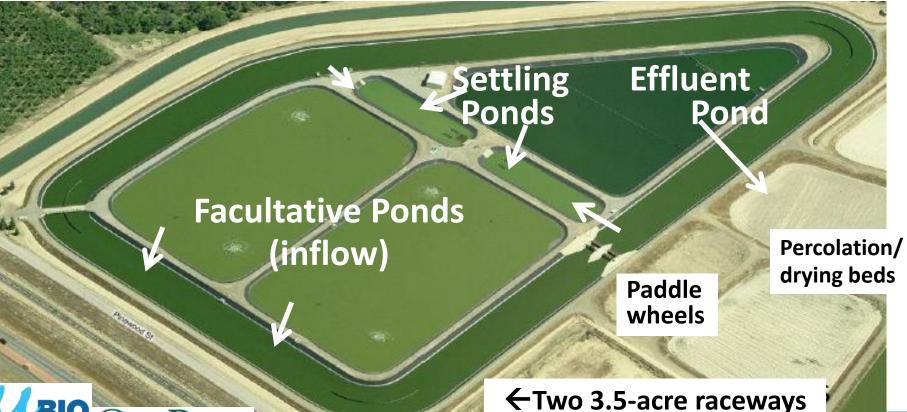

J. Benemann T. Lundquist

Ian Woertz

Ruth Spierling Braden Crowe Matt Hutton

Neal Adler **Kyle Poole**

MicroBio Engineering Inc. RNEW[®] Process: Algal Wastewater Treatment with Biofuels Production, Water/Nutrients Reclamation, Biofertilizers


Algae cultures, wastewater treatment require CO₂

CO₂ supply maximizes algal biomass production and achieves complete nutrient assimilation in wastewater treatment.

Microalgae Municipal Wastewater treatment, Delhi, CA Site of DOE BETO Funded Projects - MicroBio Engineering / CalPoly

Algae harvested by in-pond settling, then solar dried

~100,000 gallons of ~3% solids algae biomass in settling basin

Concrete drying pad

Solar Dried Algae (for biofertilizer)

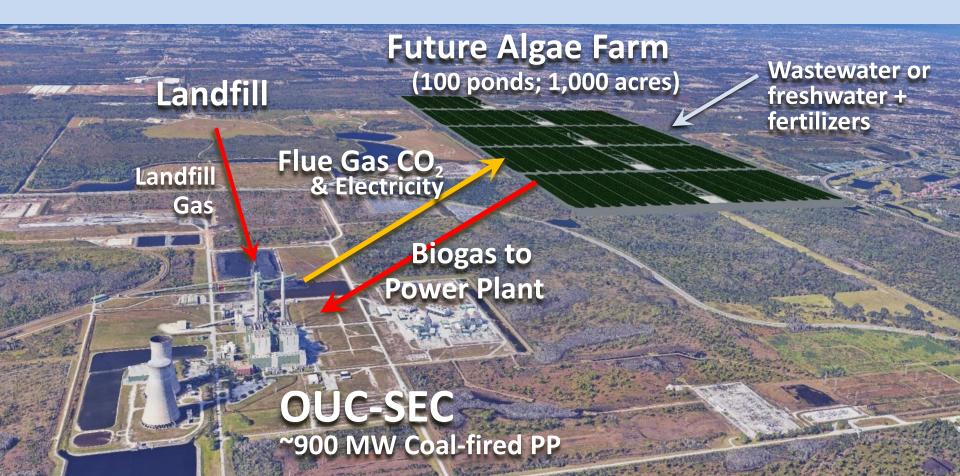
Low-Cost Conversion of Algal Biomass to Biogas (CH4/CO2) based on covered lagoon anaerobic digester technology

acre dairy wastewater digester in California)

DOE-NETL DE-FE0026490: Overall Project Objectives "Microalgae Commodities from Coal Plant Flue Gas CO2"

 <u>Primary Objective:</u> detailed <u>site-specific</u> Techno-economic Analysis (TEA) and Life Cycle Assessment (LCAs) for the Orlando Utilities Commission Stanton Energy Center (OUC-SEC) coalfired power plant for CO₂ utilization /mitigation options.

Orlando Utilities Commission Stanton Energy Center (OUC-SEC) two ~450 MW Coal-fired Power Plants


DOE-NETL DE-FE0026490: Overall Project Objectives "Microalgae Commodities from Coal Plant Flue Gas CO2"

 <u>Primary Objective:</u> detailed <u>site specific</u> Techno-economic Analysis (TEA) and Life Cycle Assessment (LCAs) for the Orlando Utilities Commission Stanton energy Center (OUC-SEC) coalfired power plant for CO₂ utilization /mitigation options:

<u>Case 1 (Budget Period 1)</u> Biogas production from algal biomass to replace coal for maximum CO₂ utilization and mitigation, and

<u>Case 2 (Budget Period 2)</u> Production of commodity microalgae animal feeds, for maximum beneficial economic use of flue gas CO₂

Case 1 (1st Yr): Flue-gas CO2 \rightarrow Algae \rightarrow biogas \rightarrow power plant

Case 1b. (1st Yr) Flue gas CO2 \rightarrow Algae \rightarrow biogas \rightarrow RNG

Future Algae Farm (100 ponds; 1,000 acres) Landfill Wastewater Flue Gas CO₂ & Electricity Landfill Gas **Biogas Renewable Natural Gas** (RNG) to pipeline or **Vehicle Fuel OUC-SEC** ~900 MW Coal-fired PP

Case 2. Algae \rightarrow animal feed production (2nd year, current)

Future Algae Farm (100 ponds; 1,000 acres)

Flue Gas CO₂ & Electricity

Animal Feeds

Freshwater

+ Fertilizers

OUC-SEC ~900 MW Coal-fired PP

DOE-NETL DE-FE0026490: Overall Project Objectives "Microalgae Commodities from Coal Plant Flue Gas CO2"

 <u>Primary Objective:</u> detailed <u>site specific Techno-economic</u> Analysis (TEA) and Life Cycle Assessment (LCAs) for the Orlando Utilities Commission Stanton energy Center OUC-SEC Coal-fired power plant for CO₂ utilization /mitigation options:

<u>Case 1 (Budget Period 1)</u> Biogas production from algal biomass to replace coal for maximum CO₂ mitigation (Budget Period 1), and <u>Case 2 (Budget Period 2)</u> Production of commodity microalgae animal feeds, for maximum beneficial economic use of flue gas CO₂

 <u>Secondary Objective</u>: experimental work at OUC-SEC and UF to demonstrate biomass production using flue gas CO2 and native algal strains for conversion to biogas and animal feed

Experimental Work

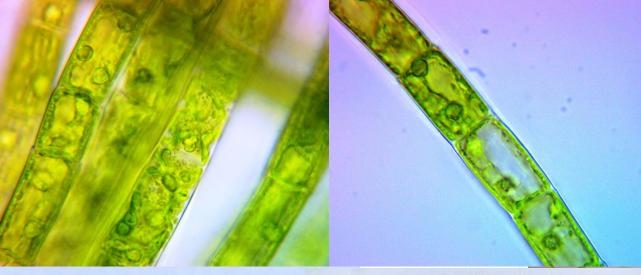
Experimental work: growth of native algae in raceway ponds at OUC (with flue gas) and U. Florida (for biogas)

- Four 3.5-m² raceways at each location
- At OUC and UF, determine seasonal productivities of natural algal strains/consortia, optimize hydraulic residence times, analyze biochemical composition, effects of flue gas contaminants.
- At OUC, compare flue gas to pure CO₂.
- At UF, algal cultivation, biogas (methane) yields.

Experimental Algae Raceway™ Ponds fabricated by MicroBio Engineering Inc. (MBE) and installed /operated at/by OUC-SEC

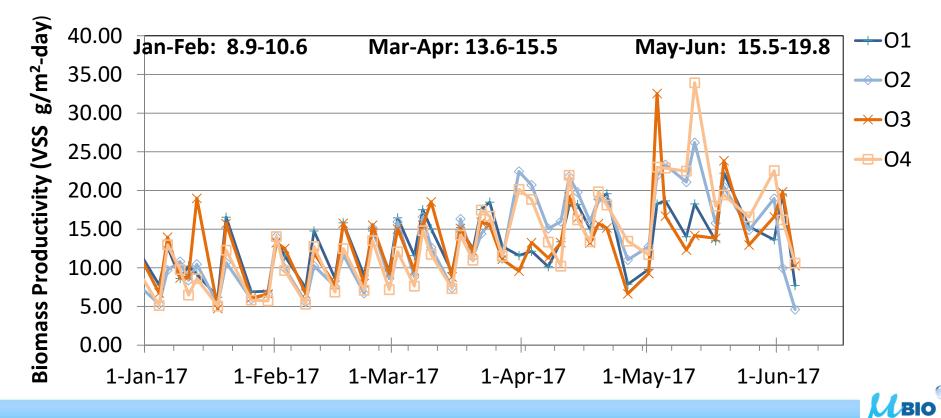
Erin Bell

Flue gas from scrubbers to condensate traps to pump to pilot ponds



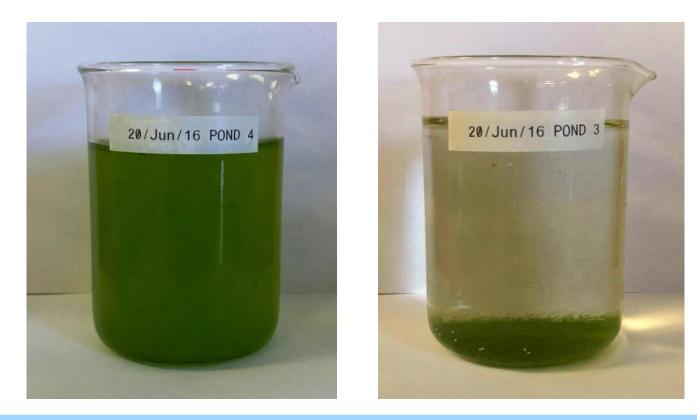
Flue gas from scrubbers to condensate traps to pump to pilot ponds with CO2 consumed by algae

Microalgae observed at OUC-SEC Ponds



a se alla se alla

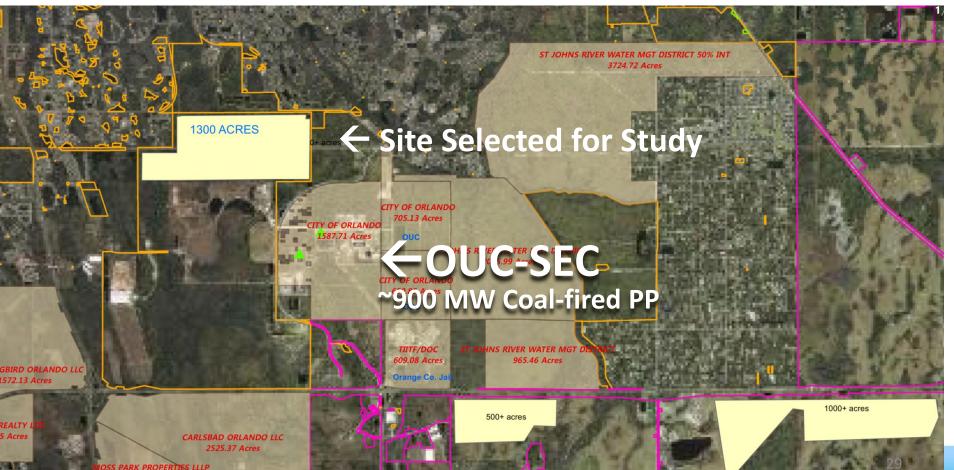
Filamentous algae dominated the OUC Ponds, which allows for easy harvesting of the biomass.


Jan-Jun 2017 productivity averaged 14 g/m²-d at OUC. Weeks of rain are the major detriment to productivity.

Pilot ponds at University of Florida - Gainesville

At UF: Bioflocculating cultures that settle

SEC and UF algae anaerobically digested at UF to determine CH₄ yield



Site Selection for TEA/LCA at OUC-SEC for a commercial 1,000 acre system

Potential Sites near OUC-SEC

839.16 Acres

Municipal Wastewater Treatment Plant

Location of 1,000 acre (400 ha) algae farm 2 miles from OUC-SEC (flue gas transport is a major limitation)

OUC-SEC ~900 MW Coal-fired PP

Flue Gas Conditioning and Transfer Operating Parameters

Parameter	Value
Operating Temperature/ Pressure	70 F / 40 psig
Flue Gas Composition	11% CO2 , balance N2, some O2 (trace contaminants, NOx, etc.)
Avg. Flow (15 g/m ² -day biomass)	17,000 cfm @ 68 F and 1 atm/day
Peak hourly Flow (summer)	122,000 cfm @ 68 F and 1 atm/hr

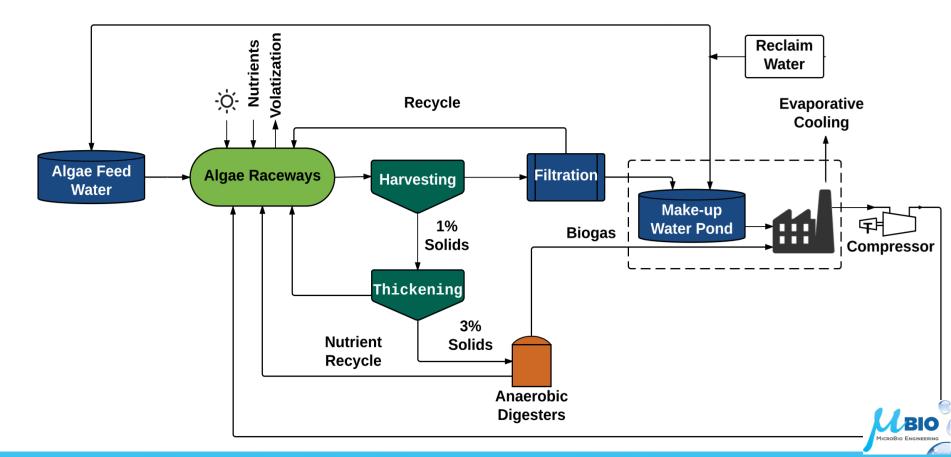
Case 1 TEA/LCA . Power Plant Flue Gas CO2 \rightarrow Algae \rightarrow Biogas

1a. Flue Gas CO2 → Algal Biomass → Biogas → Replace Coal

1b. Flue Gas CO2 \rightarrow Algal Biomass \rightarrow Biogas \rightarrow RNG

Case 1a

Flue Gas CO2 \rightarrow Algae Ponds \rightarrow Biogas \rightarrow Replace Coal

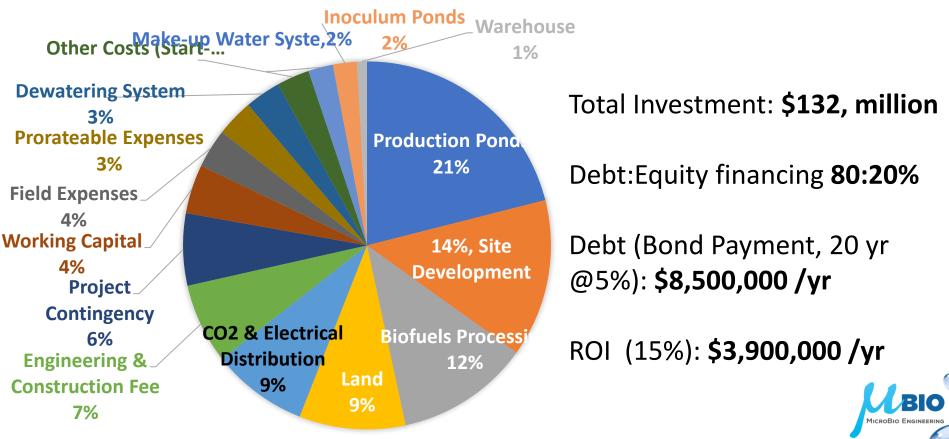

Farm Size: 400 ha (1,000 acres), 2 miles to OUC SEC Power Plant

Productivity*: 33 g afdw/m²-day (annual average)*

50 g afdw/m²-day (peak daily, in summer)*

- Flue Gas CO2 Efficiency of Capture into Algal Biomass: 55%
- Make-up Water Source: Municipal Wastewater Treatment Plant
- **Make-up Water Rate:** 38,700 m³/d (10 MGD)
- *High productivity to be achieved by complete recycling of biogas digester effluents

Case 1a – Algae derived biogas to replace coal in PP.



Case 1a. Biogas to Power Plant Carbon Utilization Summary

Description	Value	Units
Coal Electricity Carbon Intensity	286.5	g CO ₂ eq/MJe
Total Biogas HHV Energy Generated	492,138,000	MJ/yr
Total Biogas Electricity Generated	99,122,000	MJe/yr
Total Reduction in GHG Emissions	28,400	CO ₂ eq mt/yr
Percent of OUC-SEC Emissions	0.7%	

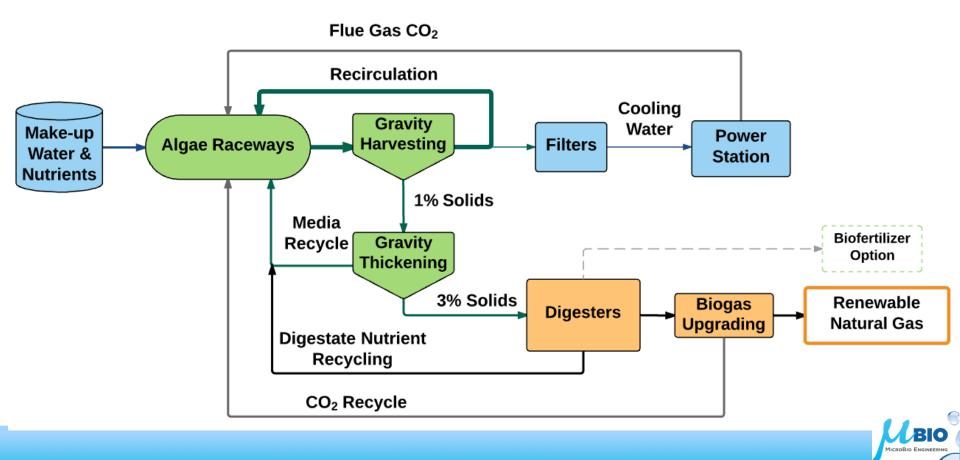
Case 1a - Biogas to Power Plant: CAPEX Summary

MicroBio Engineering Inc engineering designs, cost analysis. Financial parameters: Davis et al 2016, NREL

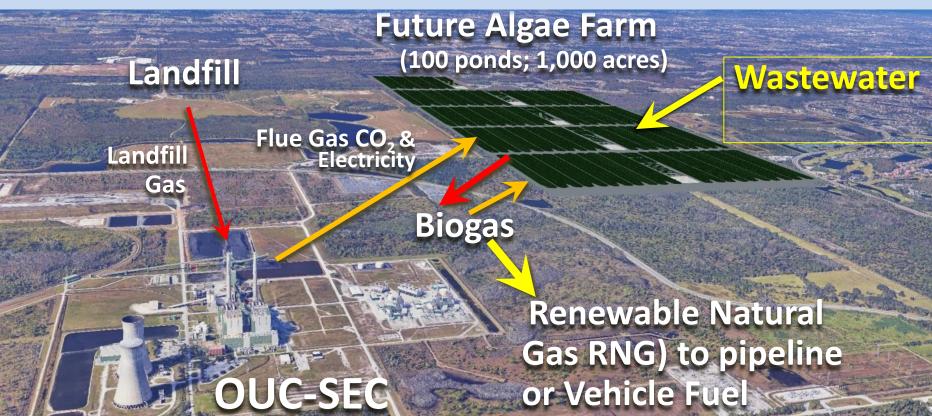
Case 1a -Biogas to Power Plant: OPEX Summary

Fertilizer 2% Make-up Labor 20% Water... Electricity 7% Equipment **Depreciation** aintenance 34% 15% Property Insurance & Tax 7%

CAPEX (Bond + Equity) **\$12,400 000 /yr**


Operating Costs: \$11,600,000 /yr

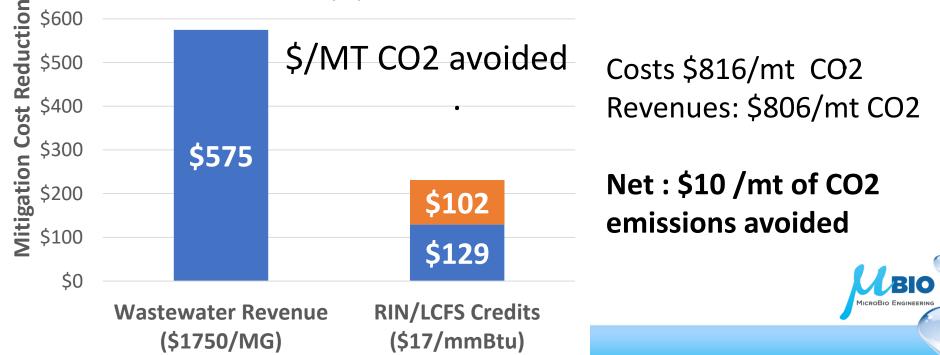
Biogas @ \$2 /mmBtu: \$933,000 /yr


CO₂ Mitigation Cost (biogas to replace coal): **\$816 /mt CO2**

MicroBio Engineering Inc engineering designs, cost analysis. Financial parameters: Davis et al 2016, NREL

Case 1b: Production of Renewable Natural Gas (RNG)

Case 1b. Alternative Process: Algae WWT \rightarrow biogas \rightarrow RNG



~900 MW Coal-fired PP

Case 1b - RNG Alternative: Biogas production + Wastewater Treatment (**12 million gallons/day**); remove CO2 from biogas to upgrade to RNG ('Renewable Natural Gas') for pipelines, vehicles.

Case 1b - RNG Alternative: Biogas production + Wastewater Treatment (increase to 30 million gallons/day); remove CO2 from biogas to upgrade to RNG ('Renewable Natural Gas') for ^{\$700} pipelines, vehicles.

Case 2. Animal Feed Case

Animal Feed Case Design Parameters

- Farm Size: 400 ha
- **Productivity:** 18 g/m²*d (annual avg.) 35 g/m²–day (peak)
- Flue Gas Source: OUC-SEC CFPP
- Distance to Farm: 2 miles
- Flue Gas CO₂ Uptake Efficiency: 55%
- Water Source: Municipal Wastewater Treatment Plant
- **Blowdown Rate:** 5%
- Make-up Water Rate: 38,700 m³/d (10 MGD)

LCA Modeling Parameters

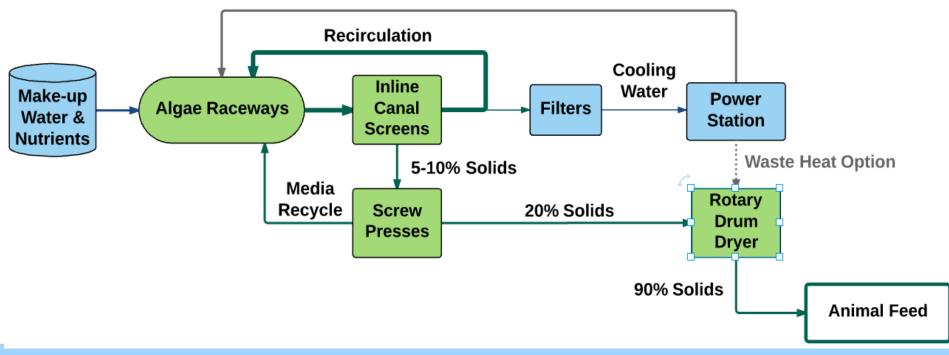
- **LCA Model Type:** Long-term Consequential (Co-product allocation)
- LCIA Method: US EPA TRACI v2.1
- Modeling Software: openLCA
- Data Sources:
- OUC-SEC specific flue gas characteristics
- Orange County reclaimed water characteristics
- Mass balance of algae, MBE ESPE model
- Ecoinvent US regional utilities (electricity, natural gas)

Soybean and Algae Feed Characteristics

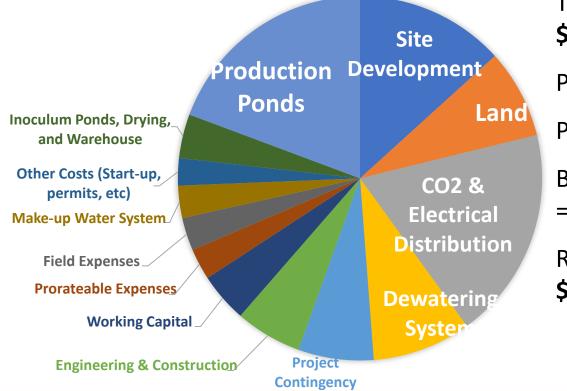
	Soybeans*	Freshwater Algae*
Protein	42%	45%
Oil	22%	20%
Carbohydrates & Other Organics	36%	35%
Nitrogen Content	6.7%	7.2%

*Ash free dry weight basis, based on Soybeans 13% moisture and 4% ash content.

Feed Content Essential Amino Acids


	Soybeans ¹	Freshwater Algae ²
Isoleucine	4.54	4.54
Leucine	7.78	8.56
Lysine	6.38	6.97
Methionine + Cystine	2.59	2.73
Phenylalanine + Tyrosine	8.08	8.63
Threonine	3.86	4.96
Valine	4.80	5.82

 ¹ Berk, Z. "Chapter 1 The Soybean." *Technology of Production of Edible Flours and Protein Products from Soybeans*. Rome: Food and Agriculture Organization of the United Nations, 1992.
² Boyd, C. E. (1973). Amino Acid Composition of Freshwater Algae. Arch Hydrobiol vol. 72:1-9.



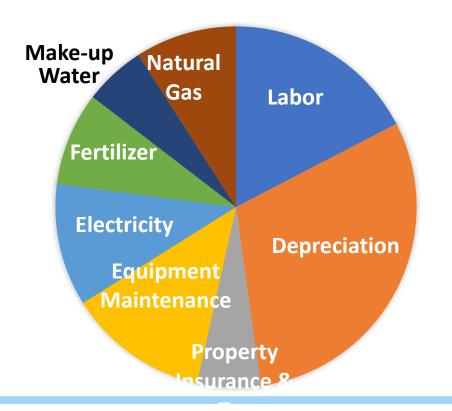
Filamentous Microalgae Animal Feed Production

Flue Gas CO₂

Animal Feed Financial Summary CAPEX

Total Capital Investment: \$125,000,000

Percent financed by debt: 80%


Percent Financed by equity:20%

Bond Payment (20 yr pond at 5%): = **\$8,030,000 /yr**

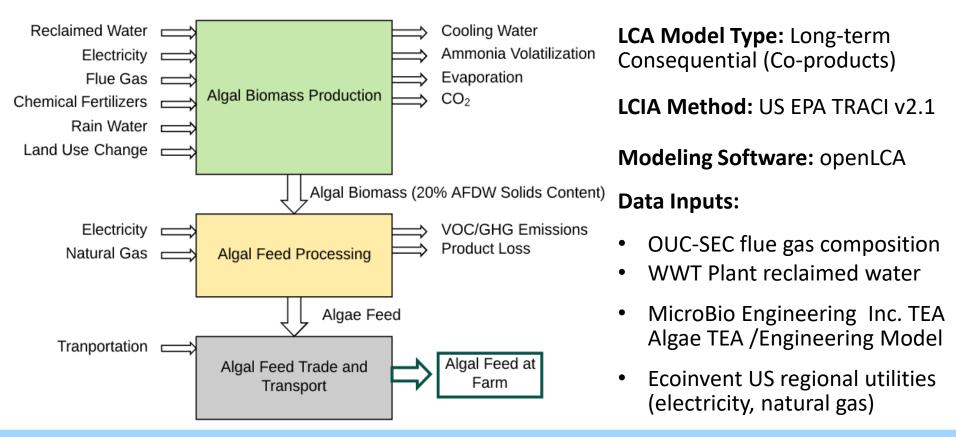
Return on Equity (15%) = \$3,750,000 /yr

MicroBio Engineering Inc engineering designs, cost analysis. Financial parameters: Davis et al 2016, NREL

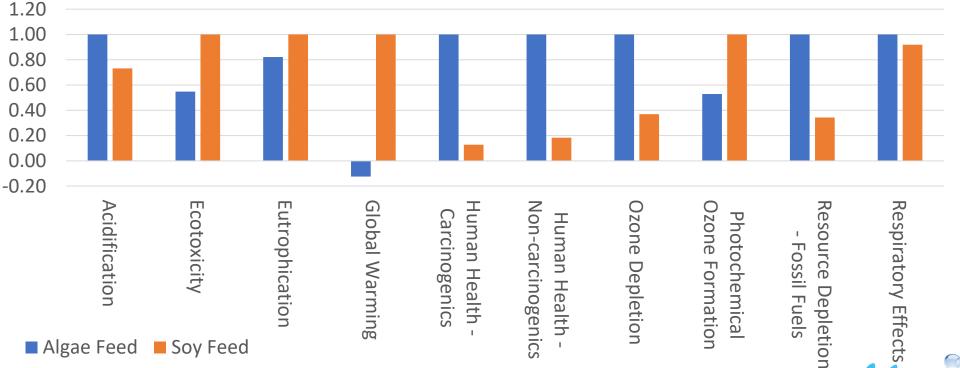
Animal Feed Financial Summary OPEX

Bond Repayment: **\$8,500,000 /yr**

Return on Equity: **\$3,900,000 /yr**

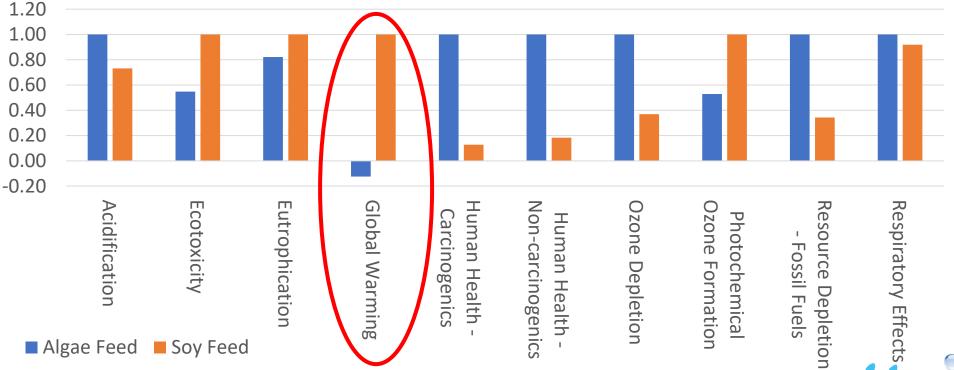

Operating Costs: **\$11,600,000 /yr**

Animal Feed Selling Price **\$965/mt**


AICROBIO ENGINEE

MicroBio Engineering Inc engineering designs, cost analysis. Financial parameters: Davis et al 2016 NREL

LCA (life Cycle Assessment) for Animal Feeds


Life Cycle Impact Assessment (LCIA) Results

Microalgae feed much lower GHG emissions than soybeans

MICROBIO ENGINEERING

Life Cycle Impact Assessment (LCIA) Results

Microalgae feed much lower GHG emissions than soybeans

MICROBIO ENGINEERING

Animal Feed Carbon Utilization Summary

Description	Value	Units
Global Warming Potential of Algae Feed	-0.473	kg CO2-eq/kg
Fraction of Carbon in Algal Biomass	47%	
Mass of Algal Feed Produced	26,300	mt/yr
CO2 Captured in Feed	45,300	mt/yr
OUC-SEC CO2 Annual Emissions	4,200,000	mt/yr
Percent of CO2 Utilized	1.1%	

Conclusions

- 400 ha (1000 acres) of algae production required for economics of scale. Utilizes ~1% of a 900 MW CFPP
- Case 1. Biogas production.
 - Wastewater treatment revenue is necessary to make carbon utilization economically feasible
 - Economics also depend on carbon markets (LCFS and RIN credits)
 - Case 2. Animal Feeds
 - Algae feed similar nutritionally to soybean (protein, energy)
 - LCA for GHG highly favorable for microalgae feeds vs. soybeans
 - Project algae feed selling price: \$965/mt, (~3 X soybeans)

Future Developments in Microalgae CO2 Utilization

- Technological advances required to achieve projected low CAPEX/OPEX
- Select/ improve algal strains for productivity, stability, composition, etc.
- Develop Wastewater/Flue gas CO2 Utilization/ Biogas to RNG Process
- Valorize algal nutritional components for higher value animal feeds.
- Commercialization in niche markets (biofertilizers, specialty feeds, etc.)

PROPOSED NEXT OUC-MBE PROJECT PHASE: Expand ponds at OUC-SEC to four x 43 m2 Scale-up of filamentous algae at OUC-SEC Flue gas CO2 utilization for algal feeds, fuels

Thanks to all participants in this project at MicroBio Engineering Inc., the Orlando Utilities Commission, U. of Florida, Arizona State Univ., Scripps Institution of Oceanography, Lifecycle Associates and SFA Pacific Inc. And DOE-FE - NETL and OUC for financial support.

Testons